Specific marking instructions for each question

Question		on	Generic scheme	Illustrative scheme	Max mark					
1.	(a)		• ¹ evaluate expression	• ¹ 10	1					
Notes:										
Commonly Observed Responses:										

Q	Question		Generic scheme	Illustrative scheme	Max mark				
1.	(b)		• ² interpret notation	• ² $g(5x)$					
			• ³ state expression for $g(f(x))$	$\bullet^3 2\cos 5x$	2				
1. F 2. C n 3. ی 4. ی	 Notes: 1. For 2cos5x without working, award both •² and •³. 2. Candidates who interpret the composite function as either g(x)×f(x) or g(x)+f(x) do not gain any marks. 3. g(f(x))=10cos x award •². However, 10cos x with no working does not gain any marks. 4. g(f(x)) leading to 2cos(5x) followed by incorrect 'simplification' of the function award •² and •³. 								
			served Responses:						
_	didate (x)) =	= 2 co	$e^{s(5x)} e^{2} e^{3}$						

	Generic scheme	Illustrative scheme	Max mark				
	• ¹ state coordinates of centre	• ¹ (4, 3)					
	• ² find gradient of radius	• ² $\frac{1}{3}$					
	• ³ state perpendicular gradient	• ³ -3					
	• ⁴ determine equation of tangent	•4 $y = -3x - 5$	4				
ept $\frac{2}{6}$ for	or \bullet^2 .						
 6 2. The perpendicular gradient must be simplified at •³ or •⁴ stage for •³ to be available. 3. •⁴ is only available as a consequence of trying to find and use a perpendicular gradient. 4. At •⁴, accept y+3x+5=0, y+3x=-5 or any other rearrangement of the equation where the constant terms have been simplified. 							
Commonly Observed Responses:							
4 4	o perpend only av , accep constan	• ² find gradient of radius • ³ state perpendicular gradient • ⁴ determine equation of tangent pt $\frac{2}{6}$ for • ² . perpendicular gradient must be simplified a only available as a consequence of trying to , accept $y+3x+5=0$, $y+3x=-5$ or any of constant terms have been simplified.	• ² find gradient of radius • ³ state perpendicular gradient • ⁴ determine equation of tangent • ² $\frac{1}{3}$ • ³ -3 • ⁴ $y = -3x-5$ pt $\frac{2}{6}$ for • ² . perpendicular gradient must be simplified at • ³ or • ⁴ stage for • ³ to be available. only available as a consequence of trying to find and use a perpendicular gradient , accept $y+3x+5=0$, $y+3x=-5$ or any other rearrangement of the equation we constant terms have been simplified.				

Qı	Question		Generic scheme	Illustrative scheme	Max mark
3.			• ¹ start to differentiate	• $12(4x-1)^{11}$	
			• ² complete differentiation	• ² ×4	2
Note	_		d for correct application of the cha		
Com	monly	y Obs	served Responses:		
Cano	didate	eΑ		Candidate B	
Wor	Candidate A $\frac{dy}{dx} = 12(4x-1)^{11} \times 4 \bullet^{1} \checkmark \bullet^{2} \checkmark$ $\frac{dy}{dx} = 36(4x-1)^{11}$ Working subsequent to a correct answer: General Marking Principle (n)			$\frac{dy}{dx} = 36(4x-1)^{11} \bullet^{1} \times \bullet^{2} \times$ ncorrect answer with no working	

Q	uestio	on	Generi	ic scheme	Illus	trative scheme	Max mark
4.			Me •1 use the discr	thod 1 iminant	• $4^2 - 4 \times 12^{-1}$	Method 1 $\times (k-5)$	
			• ² apply condition	on and simplify	• ² 36-4 k =	0 or $36 = 4k$	
			• ³ determine the	e value of k	• ³ $k=9$		3
			Method 2 •1 communicate and express in factorised form		• ¹ equal roo $\Rightarrow x^2 + 4x + 4$	Method 2 ots $-(k-5) = (x+2)^2$	
			• ² expand and compare		• ² $x^2 + 4x +$	4 leading to $k-5=4$	
			• ³ determine the	e value of k	• ³ $k = 9$		
is 2. Ir	t the brac	ketec hod 1	in their next lin if candidates use	e of working. See	Candidates A	candidate treats ' $k-5$ and B. iminant = 0 ' then \bullet^2 is le	
Com	monl	y Obs	served Response	s:			
Can	didate	e A		Candidate B			
4 ² –	4×1>	< k - 5	• ¹	$4^2 - 4 \times 1 \times k - 5$	• ¹ x		
36-	4k =	0	• ² ✓	11 - 4k = 0	● ² ✓ 1		
<i>k</i> = 1	9		• ³ •	$k = \frac{11}{4}$	● ³ √ 1		

Question	Generic scheme	Illustrative scheme	Max mark						
5. (a)	•1 evaluate scalar product	• ¹ 1	1						
Notes:	•								
Commonly Observed Responses:									

Question	Generic scheme	Illustrative scheme	Max mark				
5. (b)	• ² calculate u	• ² \sqrt{27}					
	• ³ use scalar product	• ³ $\sqrt{27} \times \sqrt{3} \times \cos \frac{\pi}{3}$					
	• ⁴ evaluate u.w	• $\frac{9}{2}$ or 4.5	3				
Notes:							
1. Candidates who treat negative signs with a lack of rigour and arrive at $\sqrt{27}$ gain \bullet^2 . 2. Surds must be fully simplified for \bullet^4 to be awarded.							
Commonly Observed Responses:							

Qı	uestion	Generic scheme	Illustrative scheme	Max mark				
6.		Method 1	Method 1					
	• ¹ equate composite function to x		• ¹ $h(h^{-1}(x)) = x$					
		• ² write $h(h^{-1}(x))$ in terms of $h^{-1}(x)$	• ² $(h^{-1}(x))^3 + 7 = x$					
		\bullet^3 state inverse function	• ³ $h^{-1}(x) = \sqrt[3]{x-7}$ or $h^{-1}(x) = (x-7)^{\frac{1}{3}}$					
				3				
		Method 2	Method 2					
	• ¹ write as $y = x^3 + 7$ and start to rearrange		• ¹ $y-7=x^3$					
	• ² complete rearrangement • ² $x = \sqrt[3]{y-7}$		• ² $x = \sqrt[3]{y-7}$					
	• ³ state inverse function		• ³ $h^{-1}(x) = \sqrt[3]{x-7}_{1}$ or					
			$h^{-1}(x) = (x-7)^{\frac{1}{3}}$	3				
		Method 3	Method 3					
		• ¹ interchange variables	• ¹ $x = y^3 + 7$					
		• ² complete rearrangement	• ² $y = \sqrt[3]{x-7}$					
		• ³ state inverse function	• ³ $h^{-1}(x) = \sqrt[3]{x-7}$ or $h^{-1}(x) = (x-7)^{\frac{1}{3}}$					
			$h^{-1}(x) = (x-7)^{\frac{1}{3}}$	3				
Note	es:							
1. y	1. $y = \sqrt[3]{x-7} \left(\text{ or } y = (x-7)^{\frac{1}{3}} \right)$ does not gain \bullet^3 .							
2. A	t • ³ stage	, accept h^{-1} expressed in terms of an	y dummy variable eg $h^{-1}(y) = \sqrt[3]{y-7}$					
3. h	$n^{-1}(x) = \sqrt[3]{}$	$\overline{x-7}$ or $h^{-1}(x) = (x-7)^{\frac{1}{3}}$ with no wor	king gains 3/3.					

Question	Generic s	scheme	Illustrative scheme	Max mark
Commonly Obs	served Responses:			
Candidate A				
	$x \to x^3 \to x^3 + 7 = h$ ^3 \rightarrow + 7 $\therefore -7 \to \sqrt[3]{}$	(x)	 ¹✓ awarded for knowing to per the inverse operations in re order 	
	$\sqrt[3]{x-7}$		• ²	
	N ~ - 1		●- <i>*</i>	
	$h^{-1}(x) = \sqrt[3]{x-7}$		• ³ •	
Candidate B -	BEWARE	Candidate C		
$h'(x) = \dots \bullet^3 *$		$h^{-1}(x) = \sqrt[3]{x} - 7$ With no working		

Q	uestion	Gener	ic scheme	Illus	trative scheme	Max mark
7.		• ¹ find midpoir	nt of AB	•1 (2,7)		
		• ² demonstrate	e the line is vertical	• ² m_{median} ur	ndefined	
		• ³ state equation	on	• ³ $x = 2$		3
Note	es:					
1. <i>n</i>	$n_{median} = \frac{\pm 4}{0}$	alone is not suffi	cient to gain \bullet^2 . Car	ndidates mus	t use either 'vertical' o	r
ʻı	undefined'	. However \bullet^3 is s	still available.			
2. '	$m_{median} = \frac{4}{0}$	×' ' $m_{median} = \frac{4}{0}$ in	npossible' ' $m_{median} = \frac{2}{6}$	infinite'	are not acceptable for	• ² .
Н	•	these are follow			ned' then award \bullet^2 , ar	
3. '	$m_{median} = \frac{4}{0}$	=0 undefined' '	$m_{median} = -$ undefined	'are not ac	ceptable for \bullet^2 .	
	0		U		nt; however, see notes	5 and 6.
					the coordinates of A a	
			without any further	errors awar	d 1/3. However, if $a =$	2, then
		• ³ are available.	y = 2x + 121 (modian	through B) c	or $3y = 2x + 21$ (mediar	through
) award 1/	•	y = zx + 1z T (methali	(III Ough D) (y = 2x + 21 (methal	runougn
	-	served Response				
,	didate A	1 /	Candidate B	1	Candidate C	1
(2,7	() 	● ¹ ✓	(2,7)	● ¹ ✓	(2,7)	
<i>m</i> =	$\frac{4}{0}$		$m = \frac{4}{0}$		$m = \frac{4}{2}$	• •
	undefine		U U		$m = \frac{1}{0}$	2 ^
			=0	• ² x	0	2
x = x		d • ² ≭ • ³ √1		• ² ¥ • ³ √ 2	$0 \\ y - 7 = \frac{4}{0}(x - 2)$	2 ^
x = 2			= 0		0 $y-7 = \frac{4}{0}(x-2)$ 0 = 4x-8	2 ^ ³ x
			= 0		0 $y-7 = \frac{4}{0}(x-2)$ 0 = 4x-8	
	2 didate D		= 0 y = 7		0 $y-7 = \frac{4}{0}(x-2)$ 0 = 4x-8	
Cano (2,7	2 didate D	• ³ √1	= 0 y = 7 Candidate E	• ³ <u>√2</u>	0 $y-7 = \frac{4}{0}(x-2)$ 0 = 4x-8	
Cana (2,7 Medi	2 didate D ') ian passes	• $^{3}\sqrt{1}$ • $^{1}\sqrt{1}$ through (2,7)	= 0 y = 7 Candidate E (2,7)	• ³ \checkmark 2 • ¹ \checkmark have an x l line	0 $y-7 = \frac{4}{0}(x-2)$ 0 = 4x-8	
Cana (2,7 Medi	2 didate D	• ³ √1	= 0 y = 7 Candidate E (2,7) Both coordinates	• ³ \checkmark 2 • ¹ \checkmark have an x	0 $y-7 = \frac{4}{0}(x-2)$ 0 = 4x-8	

Q	Question			ic schem	e		Illustrative s	scheme	Max mark
8.		• ¹ write	• ¹ write in differentiable form						
		• ² diffe	• ² differentiate			$\bullet^2 -\frac{1}{2}t^2$	-2		
Note		● ³ evalu	uate der	ivative		• $^{3}-\frac{1}{50}$			3
1. C 2. • ²	andidat ² is only		or differ	entiating		-	than one ter a negative po	m at \bullet^1 award 0 ower of t .	/3.
Cano	didate A	۱.		Candida	ite B		Candid	ate C	
$\begin{vmatrix} 2t^{-1} \\ -2t^{-1} \end{vmatrix}$		• ¹ ≭ • ² √1		$2t^{-1}$ $-2t^{-2}$		J	$-\frac{1}{2}t^{-2}$	•¹ ✓ implied b	y •²✓
- <mark>2</mark> 25	-	● ³ √ 1		$-\frac{1}{50}$		•	$-\frac{1}{50}$	•3 🗸	
Cano	didate D)	Candid	ate E		Candidate Bad form of	F f chain rule	Candidate G	
$(2t)^{t}$	^{−1} ● ¹	I 🗸	$(2t)^{-1}$	• ¹	 Image: A second s	$2t^{-1}$	● ¹ ✓	$2t^{-1}$	● ¹ ×
-(21	t) ⁻² • ²	2 🗴	$-(2t)^{-2}$	• ²	×	$-2t^{-2} \times 2$	●2 ✓	$-2t^{-2} \times 2$	•² 🗴
$\left -\frac{1}{10} \right $	0 •3	3 ✓1	$-\frac{2}{25}$	• ³	×	_ <mark>1</mark> 50	• ³ ✓	$-\frac{4}{25}$	- ³ √ 1

Q	Question		Generic scheme	Illustrative scheme	Max mark				
9.	(a)		 ¹ interpret information ² state the value of <i>m</i> 	• ¹ 13 = 28 <i>m</i> +6 stated explicitly or in a rearranged form • ² $m = \frac{1}{4}$ or $m = 0.25$					
					2				
Note	Notes:								
1. 9	Statin	gʻ <i>m</i> ∶	$=\frac{1}{4}$ or simply writing $\frac{1}{4}$ with	no other working gains only \bullet^2 .					
Com	monl	y Obs	served Responses:						
Can	didate	e A		Candidate B					
13 =	28 <i>u</i> _n	+6	• ¹ ×	28 = 13m + 6 • ¹ x					
<i>u</i> _n =	<u>1</u> 4		• ² 1	$m = \frac{22}{13} \qquad \bullet^2 \checkmark 1$					

Q	Question		Generic scheme	Illustrative scheme	Max mark		
9.	(b)	(i)	• ³ communicate condition for	• ³ a limit exists as the recurrence			
			limit to exist	relation is linear and $-1 < \frac{1}{4} < 1$	1		
Note	es:						
	2. For • ³ accept: any of $-1 < \frac{1}{4} < 1$ or $\left \frac{1}{4}\right < 1$ or $0 < \frac{1}{4} < 1$ with no further comment; or statements such as: " $\frac{1}{4}$ lies between -1 and 1" or " $\frac{1}{4}$ is a proper fraction" 3. • ³ is not available for: $-1 \le \frac{1}{4} \le 1$ or $\frac{1}{4} < 1$ or statements such as: "It is between -1 and 1." or " $\frac{1}{4}$ is a fraction."						
			who state $-1 < m < 1$ can only gair in part (a).	• ³ if it is explicitly stated			
		4	ept ' $-1 < a < 1$ ' for \bullet^3 .				
Com	Commonly Observed Responses:						
Can	Candidate C Candidate D						
(a) (b)		$=\frac{1}{4}$		(a) $\frac{1}{4}$ $\bullet^1 \checkmark \bullet^2$ (b) $-1 < m < 1$ $\bullet^3 \checkmark$	√		

Q	Question		Generic scheme	Illustrative scheme	Max mark		
9.	(b)	(ii)	• ⁴ know how to calculate limit	• ⁴ $\frac{6}{1-\frac{1}{4}}$ or $L = \frac{1}{4}L + 6$			
			• ⁵ calculate limit	•5 8	2		
Note	es:			· 			
7. • 6 8. F 9. F	 6. Do not accept L = b/(1-a) with no further working for •⁴. 7. •⁴ and •⁵ are not available to candidates who conjecture that L = 8 following the calculation of further terms in the sequence. 8. For L = 8 with no working, award 0/2. 9. For candidates who use a value of m appearing ex nihilo or which is inconsistent with their answer in part (a) •⁴ and •⁵ are not available. 						
Com	monl	y Obs	served Responses:				
Cano	lidate	e E - I	no valid limit				
(a) <i>n</i>	(a) $m = 4$ • ¹ ×						
(b) <i>I</i> <i>I</i>	(b) $L = \frac{6}{1-4} \bullet^4 \checkmark 1$ $L = -2 \bullet^5 \checkmark$						

Qı	Question		Generic scheme	Illustrative scheme	Max mark
10.	(a)		 ¹ know to integrate between appropriate limits 	Method 1 • $\int_{0}^{2} \dots dx$	
			• ² use "upper - lower"	• ² $\int_{0}^{2} \left(\left(x^{3} - 4x^{2} + 3x + 1 \right) - \left(x^{2} - 3x + 1 \right) \right)$	
			• ³ integrate	• $\frac{x^4}{4} - \frac{5x^3}{3} + 3x^2$	
			• ⁴ substitute limits	• ⁴ $\left(\frac{2^4}{4} - \frac{5 \times 2^3}{3} + 3 \times 2^2\right) - (0)$	
			• ⁵ evaluate area	• ⁵ $\frac{8}{3}$	
				Method 2	
			 know to integrate between appropriate limits for both integrals 	• $\int_{0}^{2} \dots dx$ and $\int_{0}^{2} \dots dx$	
			• ² integrate both functions	• ² $\frac{x^4}{4} - \frac{4x^3}{3} + \frac{3x^2}{2} + x$ and $\frac{x^3}{3} - \frac{3x^2}{2} + x$	
			• ³ substitute limits into both functions	• ³ $\left(\frac{2^4}{4} - \frac{4(2^3)}{3} + \frac{3(2^2)}{2} + 2\right) - 0$ and $\left(\frac{2^3}{3} - \frac{3(2^2)}{2} + 2\right) - 0$	
			• ⁴ evaluation of both functions	• $\frac{4}{3}$ and $\frac{-4}{3}$	
			• ⁵ evidence of subtracting areas	• $\frac{4}{3} - \frac{-4}{3} = \frac{8}{3}$	5

Question	Generi	ic scheme	Illus	trative scheme	Max mark				
Notes:	Notes:								
 •¹ is not available to candidates who omit 'dx'. Treat the absence of brackets at •² stage as bad form only if the correct integral is obtained at •³. See Candidates A and B. Where a candidate differentiates one or more terms at •³, then •³, •⁴ and •⁵ are unavailable. Accept unsimplified expressions at •³ e.g. x⁴/4 - 4x³/3 + 3x²/2 + x - x³/3 + 3x²/2 - x. Do not penalise the inclusion of '+c'. Candidates who substitute limits without integrating do not gain •³, •⁴ or •⁵. •⁴ is only available if there is evidence that the lower limit '0' has been considered. Do not penalise errors in substitution of x = 0 at •³. 									
Commonly Obs	erved Response	s:							
Candidate A $\int_{0}^{1} \sqrt{x^{3} - 4x^{2} + 3x^{2}}$ $\frac{x^{4}}{4} - \frac{5x^{3}}{3} + 3x^{2}$	$+1-x^2-3x+1 dx$	x $\checkmark \Rightarrow \bullet^2 \checkmark$	Candidate B •1 \checkmark $\int_{0}^{2} x^{3} - 4x^{2} + 3x + 1 - x^{2} - 3x + 1 dx$ •2 \checkmark $\frac{x^{4}}{4} - \frac{5x^{3}}{3} + 2x$ •3 \checkmark 1 $\int = -\frac{16}{3}$ cannot be negative so $= \frac{16}{3}$ •5 \checkmark However, $\int = -\frac{16}{3}$ so Area $= \frac{16}{3}$ •5 \checkmark						
		Tre	ating individua	l integrals as areas					
$ \begin{array}{c} \bullet^{1} \checkmark \\ \bullet^{2} \checkmark \\ \bullet^{3} \checkmark \\ \frac{4}{3} \text{ and } \frac{-4}{3} \end{array} $	$e^2 \checkmark$			Candidate E - Method 2 •1 \checkmark •2 \checkmark •3 \checkmark $\frac{4}{3}$ and $\frac{-4}{3}$ •4 \checkmark Area cannot be negative \therefore Area is $\frac{4}{3} + \frac{4}{3} = \frac{8}{3}$ •5	/e				

Que	estio	n	Generic scheme	Illustrative scheme	Max mark
10.	(b)		• ⁶ use "line - quadratic"	Method 1 • ⁶ $\int ((1-x)-(x^2-3x+1)) dx$	
			• ⁷ integrate	• ⁷ $-\frac{x^3}{3} + x^2$	
			• ⁸ substitute limits and evaluate integral	• ⁸ $\left(-\frac{2^3}{3}+2^2\right)-(0)=\frac{4}{3}$	
			• ⁹ state fraction	• ⁹ $\frac{1}{2}$	
				Method 2	
			• ⁶ use "cubic - <i>line</i> "	• ⁶ $\int ((x^3 - 4x^2 + 3x + 1) - (1 - x)) dx$	
			• ⁷ integrate	• ⁷ $\frac{x^4}{4} - \frac{4x^3}{3} + 2x^2$	
			• ⁸ substitute limits and evaluate integral	$\bullet^{8} \left(\frac{2^{4}}{4} - 4 \times \frac{2^{3}}{3} + 2 \times 2^{2} \right) - (0) = \frac{4}{3}$	
			• ⁹ state fraction	• ⁹ $\frac{1}{2}$	
				Method 3	
			• ⁶ integrate line	$\bullet^6 \int (1-x) dx = \begin{bmatrix} 2\\ x \\ x - \frac{2}{2} \end{bmatrix}_0^2$	
			• ⁷ substitute limits and evaluate integral	$\bullet^7 \left(2 - \frac{2^2}{2}\right) - (0) = 0$	
			 evidence of subtracting integrals 	•80- $\left(-\frac{4}{3}\right) = \frac{4}{3}$ or $\frac{4}{3} = -0$	
			• ⁹ state fraction	• $9\frac{1}{2}$	4

Question	Generic scheme	Illustrative scheme	Max mark					
Notes:								
candidate ha	IMPORTANT: Notes prefixed by *** may be subject to General Marking Principle (n). If a candidate has been penalised for the error in (a) then they must not be penalised a second time for the same error in (b).							
10. In Method correct in 11. Candidate to the ab 12. Where a unavailat	ot available to candidates who omit ds 1 and 2 only, treat the absence of ntegral is obtained at • ⁷ . es who have an incorrect expression sence of brackets lose • ² , but are aw candidate differentiates one or more ole. es where Note 3 has applied in part (⁶ brackets at \bullet^6 stage as bad form on to integrate at the \bullet^3 and \bullet^7 stage duvarded \bullet^6 . e terms at \bullet^7 , then \bullet^7 , \bullet^8 and \bullet^9 are	ie solely					
13. In Method	ds 1 and 2 only, accept unsimplified	expressions at • ⁷ e.g. $x - \frac{x^2}{2} - \frac{x^3}{3} + \frac{3}{2}$	$\frac{x^2}{2} - x$					
14. Do not pe	enalise the inclusion of ' $+c$ '.							
	Methods 1 and 2 and \bullet^7 in method 3 in the formula of the formu	s only available if there is evidence	that the					
16. At the • ⁹ awarded.	stage, the fraction must be consiste	nt with the answers at $ullet^5$ and $ullet^8$ for $ullet$	⁹ to be					
17. Do not pe	enalise errors in substitution of $x = 0$	at \bullet^8 in Method 1 & 2 or \bullet^7 in Metho	d 3.					
Commonly Obs	served Responses:							

Question	Generic scheme	Illustrative scheme	Max mark
11.	 ¹ determine the gradient of given line or of AB ² determine the other gradient ³ find a 	Method 1 •1 $\frac{2}{3}$ or $\frac{a-2}{12}$ •2 $\frac{a-2}{12}$ or $\frac{2}{3}$ •3 10	
	 ¹ determine the gradient of given line ² equation of line and substitute 	stated or implied by • ² • ² $y-2 = \frac{2}{3}(x+7)$	
Notes:	• ³ solve for a	$a-2=\frac{2}{3}(5+7)$ • ³ 10	3
	bserved Responses:		
Candidate A simultaneous $m_{\text{line}} = \frac{2}{3}$ $3y = 2x + 20$ $3y = 2x - 10 + 0 = 0 + 30 - 3a$ $3a = 30$ $a = 10$	- using equations • ¹ \checkmark - 3a $\left\{ \begin{array}{c} \text{Candidate B} \\ m_{AB} = \frac{a-2}{12} \\ \frac{a-2}{12} = -2 \\ a = -22 \\ \end{array} \right\}$	x $y-2 = \frac{2}{3}(x+7)$ 3y = 2x + 20 $3y = 2 \times 5 + 20$ 3y = 30 y = 10	2 ,² ✓

Q	Question		Generic scheme		Illustrative scheme			Max mark
12.			• ¹ use laws of l	ogs	• ¹ $\log_a 9$			
			• ² write in expo	onential form	• ² $a^{\frac{1}{2}} = 9$			
			• ³ solve for a		• ³ 81			3
Note	es:							
2. A 3. • ²	1. $\frac{36}{4}$ must be simplified at \bullet^1 or \bullet^2 stage for \bullet^1 to be awarded. 2. Accept log 9 at \bullet^1 . 3. \bullet^2 may be implied by \bullet^3 .							
Com	mont	y Obs	served Response					
Cano	didate	e Α		Candidate B		Candidate C		
\log_a	144		• ¹ 🗴	$\log_a 32$	• ¹ 🗴	$\log_a 9$	●1 ✓	
$a^{\frac{1}{2}} =$	= 144		● ² <mark>√1</mark>	$a^{\frac{1}{2}} = 32$	● ² ✓1	$a = 9^{\frac{1}{2}}$	• ² ¥	
a = '	12		• ³ ¥		• ³ ^	<i>a</i> = 3	• ³ √ 2	
	didate							
2 log	g _a 36 -	- 2 log	$g_a 4 = 1$					
\log_a	$\log_a 36^2 - \log_a 4^2 = 1 \bullet^1 \checkmark$							
	$\frac{36^2}{4^2}$ =							
\log_a	81=1	1 4	• ² ✓					
a = b	81		●3✓					

Question		on	Generic scheme	Illustrative scheme	Max mark	
13.			• ¹ write in integrable form	• $(5-4x)^{-\frac{1}{2}}$		
			• ² start to integrate	• $(5-4x)^{-\frac{1}{2}}$ • $\frac{(5-4x)^{\frac{1}{2}}}{\frac{1}{2}}$		
			• ³ process coefficient of x	• ³ × $\frac{1}{(-4)}$		
Note	c •		 ⁴ complete integration a simplify 	nd $e^4 -\frac{1}{2}(5-4x)^{\frac{1}{2}}+c$	4	
1. F 2. F 3. F 4.	For ca For ca form If can brack '+c'	andid awar Ididat et no is rec	d 0/4. ces start to integrate individual te further marks are available. quired for• ⁴ .	t, only • ¹ is available. ator' without attempting to write in inte rms within the bracket or attempt to ex		
			served Responses:	Candidata D		
Cand	ndate	2 A		Candidate B		
(5-4	$(4x)^{-\frac{1}{2}}$		• ¹ 🗸	$(5-4x)^{\frac{1}{2}}$ • ¹ *		
$\frac{(5-4)}{\frac{1}{2}}$	$(4x)^{\frac{1}{2}}$		• ² ✓ • ³ ^	$\frac{\left(5-4x\right)^{\frac{3}{2}}}{\frac{3}{2}} \times \frac{1}{\left(-4\right)} \qquad \qquad \bullet^{2} \checkmark 1 \bullet^{3}$	✓	
2(5-	$(-4x)^{\frac{1}{2}}$	+ C	•4 12	$-\frac{(5-4_x)^{\frac{3}{2}}}{6}+c$ • ⁴ \checkmark 1		
Cand	lidate	e C		Candidate D		
Diffe	Differentiate in part:			Differentiate in part:		
(5-4	$(4x)^{-\frac{1}{2}}$		•1 🗸	$(5-4x)^{-\frac{1}{2}} \qquad \mathbf{\bullet}^1 \checkmark$		
$-\frac{1}{2}(5)$				$(5-4x)^{-\frac{1}{2}} \qquad \bullet^{1} \checkmark$ $\frac{(5-4x)^{\frac{1}{2}}}{\frac{1}{2}} \times (-4) \qquad \bullet^{2} \checkmark \bullet^{3} \bigstar$ $-8(5-4x)^{\frac{1}{2}} + c \qquad \bullet^{4} \checkmark 1$		
$\frac{1}{8}(5-$	$-4x)^{-}$	$\frac{1}{2} + C$	● ⁴ <mark>√1</mark>	$-8(5-4x)^{\frac{1}{2}}+c$ • ⁴ \checkmark 1		

Q	uestic	on	Generic Scheme	Illustrative Scheme	Max Mark			
14.	(a)		• ¹ use compound angle formula	• $k \sin x^{\circ} \cos a^{\circ} - k \cos x^{\circ} \sin a^{\circ}$ stated explicitly				
			• ² compare coefficients	• ² $k \cos a^\circ = \sqrt{3}, k \sin a^\circ = 1$ stated explicitly				
			• ³ process for k	• ³ $k = 2$				
			• ⁴ process for <i>a</i> and express in required form	• ⁴ $2\sin(x-30)^{\circ}$	4			
Notes:								
1. A	1. Accept $k(\sin x^{\circ} \cos a^{\circ} - \cos x^{\circ} \sin a^{\circ})$ for \bullet^{1} . Treat $k \sin x^{\circ} \cos a^{\circ} - \cos x^{\circ} \sin a^{\circ}$ as bad form							

- only if the equations at the $ullet^2$ stage both contain k .
- 2. Do not penalise the omission of degree signs.

3. $2\sin x^{\circ}\cos a^{\circ} - 2\cos x^{\circ}\sin a^{\circ}$ or $2(\sin x^{\circ}\cos a^{\circ} - \cos x^{\circ}\sin a^{\circ})$ is acceptable for \bullet^{1} and \bullet^{3} .

- 4. In the calculation of k = 2, do not penalise the appearance of -1.
- 5. Accept $k \cos a^{\circ} = \sqrt{3}, -k \sin a^{\circ} = -1$ for •².
- 6. •² is not available for $k \cos x^{\circ} = \sqrt{3}$, $k \sin x^{\circ} = 1$, however, •⁴ is still available.
- 7. •³ is only available for a single value of k, k > 0.
- 8. •³ is not available to candidates who work with $\sqrt{4}$ throughout parts (a) and (b) without simplifying at any stage.
- 9. •⁴ is not available for a value of a given in radians.
- 10. Candidates may use any form of the wave equation for \bullet^1 , \bullet^2 and \bullet^3 , however, \bullet^4 is only available if the value of a is interpreted in the form $k \sin(x-a)^\circ$
- 11. Evidence for \bullet^4 may only appear as a label on the graph in part (b).

Commonly Observed Responses:

Responses with missing information in working:

Candidate A		Candidate B
	• ¹ ^	$k\sin x\cos a - k\cos x\sin a \bullet^1 \checkmark$
$2\cos a = \sqrt{3}$ $2\sin a = 1$ $\tan a = \frac{1}{\sqrt{3}}, a = 30$ $2\sin(x-30)^{\circ}$	• ² • • ³ •	$\cos a = \sqrt{3}$ $\sin a = 1$ $\tan a = \frac{1}{\sqrt{3}}$ Not consistent with equations at • ² .
		$2\sin(x-30)^\circ$ $\bullet^3 \checkmark \bullet^4 \bigstar$

Question	Gener	ic Scheme	Illus	trative Scheme	Max Mark
Responses wit	h the correct ex	pansion of $k \sin(x -$	$a)^{\circ}$ but erro	rs for either \bullet^2 or \bullet^4 .	
Candidate C		Candidate D		Candidate E	
$k\cos a = \sqrt{3}, k \sin a$	$\sin a = 1 \bullet^2 \checkmark$	$k\cos a = 1, k\sin a =$	√3 •² ≭	$k\cos a = \sqrt{3}, k\sin a = -$	-1 • ² ×
$\tan a = \sqrt{3}$ $a = 60$	•4 🗴	$\tan a = \sqrt{3}$ a = 60 $2\sin(x - 60)^{\circ}$	● ⁴ √ 1	$\tan a = -\frac{1}{\sqrt{3}}, \ a = 330$	
				$2\sin(x-330)^{\circ}$	● ⁴ √ 1
Responses wit	h the incorrect l	abelling; k sin A cos	$B-k\cos As$	in B from formula list.	
Candidate F		Candidate G		Candidate H	
$k \sin A \cos B - k$	$k\cos A\sin B \bullet^{1} \mathbf{x}$	$k \sin A \cos B - k \cos B$	$A \sin B \bullet^{1} \varkappa$	$k \sin A \cos B - k \cos A s$	in B ● ¹ ≭
$k\cos a = \sqrt{3}$		$k\cos x = \sqrt{3}$		$k\cos \mathbf{B} = \sqrt{3}$	
$k \sin a = 1$	• ² ✓	$k \sin x = 1$	• ² 🗴	$k\cos \mathbf{B} = \sqrt{3}$ $k\sin \mathbf{B} = 1$	• ² x
$\tan a = \frac{1}{\sqrt{3}}, a =$	= 30	$\tan x = \frac{1}{\sqrt{3}}, x = 30$		$\tan B = \frac{1}{\sqrt{3}}, B = 30$ $2\sin(x-30)^{\circ} \bullet^{3}$	
$2\sin(x-30)^{\circ}$	● ³ ✓ ● ⁴ ✓	$2\sin(x-30)^{\circ}$	● ³ √ ● ⁴ √ 1	$2\sin(x-30)^\circ$ $\bullet^3\checkmark$	′ ● ⁴ √ 1

Q	uestic	on	Generic scheme	Illustrative scheme	Max mark	
14.	(b)		• ⁵ roots identifiable from graph	• ⁵ 30 and 210		
			• ⁶ coordinates of both turning points identifiable from graph	• ⁶ (120, 2) and (300, -2)		
			• ⁷ y-intercept and value of y at $x = 360$ identifiable from graph	• ⁷ –1	3	
Note	es:				y	
14. 15. 16.	Vertie Candi see a For a	cal mi idates lso ca iny in	Indidates I and J.			
Com	monl	y Obs	served Responses:			
Cano	lidate	e		Candidate J		
(a)2	(a) $2\sin(x-30)$ correct equation			(a) $2\sin(x+30)$ incorrect equation		
(b) I	(b) Incorrect translation:			(b) Sketch of $2\sin(x+30)$		
Sketch of $2\sin(x+30)$			(x+ 30)			
Only	• ⁶ is a	availa		All 3 marks are available		

Generic scheme	Illustrative scheme	Max mark					
• ¹ state value of a	• ¹ –5						
\bullet^2 state value of b	• ² 3	2					
Notes:							
erved Responses:							
	• ¹ state value of <i>a</i>	• ¹ state value of a • ² state value of b • ² 3					

Question		on	Generic scheme		Illustrative Scheme	Max Mark
15.	(b)		• ³ state value of integral	• ³	10	1
 Notes: 1. Candidates answer at (b) must be consistent with the value of b obtained in (a). 2. In parts (b) and (c), candidates who have 10 and -6 accompanied by working, the working must be checked to ensure that no errors have occurred prior to the correct answer appearing. Commonly Observed Responses: 						
Cand From a = - b = 2	didate n (a) –3 • ¹ 5 • ²	e A ×	• ³ <u>√1</u>			

Question		on	Generic scheme	Illustrative scheme		Max mark		
15.	(c)		• ⁴ state value of derivative	•4 -6		1		
Notes:								
Commonly Observed Responses:								
Com	imoni	ly UDS	served Responses:					

[END OF MARKING INSTRUCTIONS]

Question		on	Generic scheme	Illustrative scheme	Max mark		
1.	(a)		• ¹ find mid-point of BC	• ¹ (6,-1)			
	• ² calculate gradient of BC		• ² calculate gradient of BC	• ² $-\frac{2}{6}$			
			• ³ use property of perpendicular lines	• ³ 3			
			• ⁴ determine equation of line in a simplified form	$\bullet^4 y = 3x - 19$	4		
Notes:							
 1. •⁴ is only available as a consequence of using a perpendicular gradient and a midpoint. 2. The gradient of the perpendicular bisector must appear in simplified form at •³ or •⁴ stage for •³ to be awarded. 3. At •⁴, accept 3x - y - 19 = 0, 3x - y = 19 or any other rearrangement of the equation where 							

3. At •⁴, accept 3x - y - 19 = 0, 3x - y = 19 or any other rearrangement of the equation where the constant terms have been simplified.

Commonly Observed Responses:

Question	Generic scheme	Illustrative scheme	Max mark
1. (b)	• ⁵ use $m = \tan \theta$	• ⁵ 1	
	• ⁶ determine equation of AB	• ⁶ $y = x - 3$	2
Notes:		·	

4. At \bullet^6 , accept y - x + 3 = 0, y - x = -3 or any other rearrangement of the equation where the constant terms have been simplified.

Question	Generic scheme	Illustrative scheme	Max mark					
1. (c)	• ⁷ find x or y coordinate	• ⁷ $x = 8$ or $y = 5$						
	• ⁸ find remaining coordinate	• ⁸ $y = 5$ or $x = 8$	2					
Notes:								
Commonly Observed Responses:								

Q	uestic	on	Generic scheme	Illustrative scheme	Max mark
2.	(a)		Method 1	Method 1	
			 ¹ know to use x=1 in synthetic division 	$ \begin{array}{c cccccccccccccccccccccccccccccccccc$	
			• ² complete division, interpret result and state conclusion	• ² 1 $\begin{vmatrix} 2 & -5 & 1 & 2 \\ 2 & -3 & -2 \\ \hline 2 & -3 & -2 & 0 \\ Remainder = 0 \therefore (x-1) \text{ is a factor} \end{vmatrix}$	2
			Method 2	Method 2	
			• ¹ know to substitute $x = 1$	• ¹ 2(1) ³ - 5(1) ² + (1) + 2	
			• ² complete evaluation, interpret result and state conclusion	• ² = 0 $\therefore (x-1)$ is a factor	2
			Method 3	Method 3	
			 ¹ start long division and find leading term in quotient 	• ¹ $2x^2$ (x-1) $2x^3 - 5x^2 + x + 2$	
			• ² complete division, interpret result and state conclusion	• ² $2x^{2}-3x-2$ (x-1) $2x^{3}-5x^{2}+x+2$ $2x^{3}-2x^{2}$ $-3x^{2}+x$ $-3x^{2}+3x$ $-2x+2$ $-2x+2$ 0 remainder = 0 \therefore (x-1) is a factor	
					2

Question	Generic scheme	Illustrative scheme	Max mark						
Notes:	Notes:								
 Communication at •² must be consistent with working at that stage i.e. a candidate's working must arrive legitimately at 0 before •² can be awarded. Accept any of the following for •²: ' f (1) = 0 so (x-1) is a factor' 'since remainder = 0, it is a factor' the 0 from any method linked to the word 'factor' by e.g. 'so', 'hence', '∴', '→', '→' 									
• doul • ' <i>x</i> = · (<i>x</i> ·	pt any of the following for \bullet^2 : ble underlining the zero or boxing the -1 is a factor', ' $(x+1)$ is a factor', -1) is a root' ' $x = -1$ is a root'. word 'factor' only with no link								

Commonly Observed Responses:

Question		n	Generic scheme	Illustrative scheme	Max mark
2.	(b)		• ³ state quadratic factor	• $3 2x^2 - 3x - 2$	
			• ⁴ find remaining factors	• ⁴ (2x+1) and (x-2)	
			$ullet^5$ state solution	• ⁵ $x = -\frac{1}{2}$, 1, 2	3

Notes:

- 4. The appearance of "=0" is not required for \bullet^5 to be awarded.
- 5. Candidates who identify a different initial factor and subsequent quadratic factor can gain all available marks.
- 6. \bullet^5 is only available as a result of a valid strategy at \bullet^3 and \bullet^4 .

7. Accept
$$\left(-\frac{1}{2},0\right)$$
, $(1,0)$, $(2,0)$ for \bullet^{5}

Q	uestion	Generic scheme	Illustrative scheme	Max mark			
3.		• ¹ substitute for <i>y</i>	• ¹ $(x-2)^2 + (3x-1)^2 = 25$ or $x^2 - 4x + 4 + (3x)^2 - 2(3x) + 1 = 25$				
		• ² express in standard quadratic form	• ² $10x^2 - 10x - 20 = 0$				
		• ³ factorise	• ³ $10(x-2)(x+1)=0$				
		• ⁴ find x coordinates	• ⁴ $x = 2$ $x = -1$				
		• ⁵ find <i>y</i> coordinates	• ⁵ $y = 6$ $y = -3$	5			
Note	es:						
a 4. A th 5. • ³ 6. • ⁴ 7. Fo	 2. •² is only available if '= 0' appears at •² or •³ stage. 3. If a candidate arrives at an equation which is not a quadratic at •² stage, then •³, •⁴ and •⁵ are not available 4. At •³ do not penalise candidates who fail to extract the common factor or who have divided the quadratic equation by 10. 5. •³ is available for substituting correctly into the quadratic formula. 6. •⁴ and •⁵ may be marked either horizontally or vertically. 7. For candidates who identify both solutions by inspection, full marks may be awarded provided they justify that their points lie on both the line and the circle. Candidates who identify both solutions, but justify only one gain 2 out of 5. 						
Com	monly Obs	erved Responses:					
Candidate A $(x-2)^{2} + (3x-1)^{2} = 25 \bullet^{1} \checkmark$ $10x^{2} - 10x = 20 \bullet^{2} \times$ $10x(x-1) = 20 \bullet^{3} \checkmark 2$ $x = 2 x = 3 \bullet^{4} \times$ $y = 6 y = 9 \bullet^{5} \checkmark 2$ Candidate B Candidates who substitute into the circle equation only $\bullet^{1} \checkmark$ $\bullet^{2} \checkmark$ $\bullet^{3} \checkmark$ $Sub x = 2 Sub x = -1$ $y^{2} - 2y - 24 = 0 y^{2} - 2y - 15 = 0$ $(y-6)(y+4) = 0 (y+3)(y-5) = 0$ $y = 6 \text{ or } y = 4 y = -3 \text{ or } y = 5$ $(2 6) (-1 2) 5 \text{ tr}$							
			$(2,6) (-1,-3) \bullet^5 *$				

Q	Question		Ger	neric scheme	Illustrative scheme	Max mark
4.	(a)			Method 1	Method 1	
			• ¹ identify o	common factor	• $3(x^2 + 8x$ stated or implied by • ²	
			• ² complete	e the square	• ² $3(x+4)^2$	
			• ³ process f required	for c and write in form	• $3(x+4)^2+2$	3
				Method 2	Method 2	
			• ¹ expand c	ompleted square for	$e^{1} ax^{2} + 2abx + ab^{2} + c$	
			• ² equate c	oefficients	• ² $a=3$, $2ab=24$, $ab^2+c=50$	
			• ³ process f in require	for b and c and write ed form	• • $3(x+4)^2+2$	3
Note	es:					
2. •		nly av			nly; however, see Candidate G. both multiplication and subtraction of	
			erved Respo	inses:		
Can	didate	e A			Candidate B	
$3 x^2$	$x^{2} + 8x$	$+\frac{50}{3}$		● ¹ ✓	$3x^2 + 24x + 50 = 3(x+8)^2 - 64 + 50 \bullet^1 = 3$	x ● ² x
		•)	$-16+\frac{50}{3}$		$=3(x+8)^2-14$ • ³	√2
			3) • ² ^	further working is required		
Can	didate	e C			Candidate D	
ax^2	+ 2 abx	$x + ab^2$	+c	●1 ✓	$3((x^2+24x)+50)$ • ¹	ĸ
		b=24 ≈4, c	$b^2 + c = 50$	• ² ¥		√ 1
	$(+4)^2$	<i>.</i>	– J 4	● ³ √ 1		√ 1

Question Generic scheme		Illustrative scheme Max mark		
a=3, 2ab=24 b=4, c=2 \bullet^3 is awa working	$x^{2} + 2abx + ab^{2} + c \qquad \bullet^{1} \checkmark$ $ab^{2} + c = 50 \qquad \bullet^{2} \checkmark$ $\bullet^{3} \checkmark$ arded as all relates to relates to relates to relates to	Candidate F $ax^2 + 2abx + ab^2 + c$ $\bullet^1 \checkmark$ $a = 3, \ 2ab = 24, \ ab^2 + c = 50$ $\bullet^2 \checkmark$ $b = 4, \ c = 2$ $\bullet^3 \times$ \bullet^3 is lost as no reference is made to completed square form		
	3x+16)+2 24x+48+2 24x+50	Candidate H $3x^2 + 24x + 50$ $= 3(x+4)^2 - 16 + 50$ $\bullet^1 \checkmark \bullet^2 \checkmark$ $= 3(x+4)^2 + 34$ $\bullet^3 \bigstar$		
Award 3/3				

Q	Question		Generic scheme	Illustrative scheme	Max mark		
4.	(b)		• ⁴ differentiate two terms	• $3x^2 + 24x$			
			• ⁵ complete differentiation	• ⁵ +50	2		
Note	es:						
3. •	3. • ⁴ is awarded for any two of the following three terms: $3x^2$, $+24x$, $+50$						
Com	Commonly Observed Responses:						

Q	uestio	on	Generic scheme	Illustrative scheme	Max mark
4.	(c)		Method 1	Method 1	
		• ⁶ link with (a) and identify sign of $(x+4)^2$		• ⁶ $f'(x) = 3(x+4)^2 + 2$ and $(x+4)^2 \ge 0 \forall x$	
			• ⁷ communicate reason	• ⁷ $\therefore 3(x+4)^2 + 2 > 0 \Rightarrow$ always strictly increasing	
			Method 2	Method 2	
			• ⁶ identify minimum value of $f'(x)$	• ⁶ eg minimum value =2 or annotated sketch	
			• ⁷ communicate reason	• ⁷ $2 > 0 \therefore (f'(x) > 0) \Rightarrow$ always strictly increasing	2
Note	<u>.</u>				2
		pena	lise $(x+4)^2 > 0$ or the omission of	$f'(x)$ at \bullet^6 in Method 1	
5. R 6. W 51 7. A 51	espor vailat /here trictly t • ⁶ c tatem vailat	nses ir ole. error incre ommu nents ole.	In part (c) must be consistent with version of a candidate easing, only \bullet^6 is available. Unication should be explicitly in terms such as "(something) ² \geq 0", "some	working in parts (a) and (b) for \bullet^6 and considering a function which is not alter rms of the given function. Do not access thing squared ≥ 0 ". However, \bullet^7 is st	ways
			served Responses:		
	didate $r = 3$			Candidate J 166	
- ($f'(x) = 3(x+4)^{2} + 2$ $3(x+4)^{2} + 2 > 0 \Rightarrow \text{ strictly increasing.}$		$1 \rightarrow \text{strictly increasing}$	Since $3x^2 + 24x + 50 = 3(x+4)^2 + \frac{166}{50}$	
	$S(x+4) + 2 > 0 \implies$ strictly increasing. Award 1 out of 2			and $(x+4)^2$ is >0 for all x then	
				$B(x+4)^2 + \frac{166}{50} > 0$ for all x.	
			H V	Hence the curve is strictly increasing values of x . •6 \checkmark •7 \checkmark 1	g for all

C	Question		Generic scheme	Illustrative scheme	Max mark		
5.	(a)		• ¹ identify pathway	• ¹ $\overrightarrow{PR} + \overrightarrow{RQ}$ stated or implied by • ²			
			• ² state \overrightarrow{PQ}	• ² $-3i-4j+5k$	2		
Not	Notes:						

1. Award \bullet^1 (9i+5j+2k)+(-12i-9j+3k).

2. Candidates who choose to work with column vectors and leave their answer in the form $\begin{pmatrix} -3 \end{pmatrix}$

 $\begin{bmatrix} -4 \\ 5 \end{bmatrix}$ cannot gain \bullet^2 .

- 3. \bullet^2 is not available for simply adding or subtracting vectors within an invalid strategy.
- 4. Where candidates choose specific points consistent with the given vectors, only \bullet^1 and \bullet^4 are available. However, should the statement 'without loss of generality' precede the selected points then marks \bullet^1 , \bullet^2 , \bullet^3 and \bullet^4 are all available.

Q	Question		n Generic scheme Illustrative scheme		Max mark	
5.	(b)		• ³ interpret ratio	• ³ $\frac{2}{3}$ or $\frac{1}{3}$		
			• ⁴ identify pathway and demonstrate result	• ⁴ $\overrightarrow{PR} + \frac{2}{3}\overrightarrow{RQ}$ or $\overrightarrow{PQ} + \frac{1}{3}\overrightarrow{QR}$ leading to $i - j + 4k$		
				1 - j + 4k	2	
Note						
	5. This is a 'show that' question. Candidates who choose to work with column vectors must write their final answer in the required form to gain \bullet^4 . $\begin{pmatrix} 1 \\ -1 \\ 4 \end{pmatrix}$ does not gain \bullet^4 .					
6.	6. Beware of candidates who fudge their working between \bullet^3 and \bullet^4 .					

Question	Generic scheme		Illustrative scheme	Max mark
Commonly Observ	ved Responses:			
Candidate A - leg formula $\overrightarrow{PS} = \frac{n\overrightarrow{PQ} + m\overrightarrow{PR}}{m+n}$ $\overrightarrow{PS} = \frac{2\overrightarrow{PQ} + \overrightarrow{PR}}{3} \cdot 3$ $= \frac{2 (-3)}{-4} + (9) + (5) + (2) + (3) + ($		origin 2QS = 3s = 2 3s = 2		as the

Q	uestic	on	Generic scheme	Illustrative scheme	Max mark
5.	(c)		Method 1	Method 1	
			● ⁵ evaluate PQ.PS	• ⁵ $\overrightarrow{PQ}.\overrightarrow{PS} = 21$	
			• ⁶ evaluate \overrightarrow{PQ}	• ⁶ $\left \overline{PQ} \right = \sqrt{50}$ • ⁷ $\left \overline{PS} \right = \sqrt{18}$	
			• ⁷ evaluate \overline{PS}	• ⁷ $\left \overrightarrow{PS} \right = \sqrt{18}$	
			• ⁸ use scalar product	• ⁸ cos QPS = $\frac{21}{\sqrt{50} \times \sqrt{18}}$	
			• ⁹ calculate angle	● ⁹ 45·6° or 0·795 radians	5
			Method 2	Method 2	
			• ⁵ evaluate \overline{QS}	• ⁵ $\left \overrightarrow{QS} \right = \sqrt{26}$	
			• ⁶ evaluate PQ	• ⁵ $\left \overline{QS} \right = \sqrt{26}$ • ⁶ $\left \overline{PQ} \right = \sqrt{50}$	
			\bullet^7 evaluate \overline{PS}	$\bullet^7 \overrightarrow{PS} = \sqrt{18}$	
			• ⁸ use cosine rule	• ⁸ cosQPS = $\frac{(\sqrt{50})^2 + (\sqrt{18})^2 - (\sqrt{26})^2}{2 \times \sqrt{50} \times \sqrt{18}}$	
Note			• ⁹ calculate angle	● ⁹ 45·6° or 0·795 radians	5

7. For candidates who use \overrightarrow{PS} not equal to $i - j + 4k \bullet^5$ is not available in Method 1 or \bullet^7 in Method 2.

- 8. Do not penalise candidates who treat negative signs with a lack of rigour when calculating a magnitude. However, $\sqrt{1^2 1^2 + 4^2}$ leading to $\sqrt{16}$ indicates an invalid method for calculating the magnitude. No mark can be awarded for any magnitude arrived at using an invalid method.
- 9. •⁸ is not available to candidates who simply state the formula $\cos\theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}$.

However,
$$\cos\theta = \frac{\overrightarrow{PQ}.\overrightarrow{PS}}{\left|\overrightarrow{PQ}\right| \times \left|\overrightarrow{PS}\right|}$$
 or $\cos\theta = \frac{21}{\sqrt{50} \times \sqrt{18}}$ is acceptable. Similarly for Method 2.

- 10. Accept answers which round to 46° or 0.8 radians.
- 11. Do not penalise the omission or incorrect use of units.
- 12. \bullet^9 is only available as a result of using a valid strategy.
- 13. \bullet^9 is only available for a single angle.
- 14. For a correct answer with no working award 0/5.

Question	Generic scheme	Illustrative scheme Max mark
Commonly Obs	erved Responses:	
Candidate C - C	Calculating wrong angle	Candidate D- Calculating wrong angle
$\overrightarrow{QP}.\overrightarrow{QS} = 29$	• ⁵ x	$\overrightarrow{PS}.\overrightarrow{QP} = -21$ $\bullet^5 \times$
$\left \overrightarrow{QP} \right = \sqrt{50}$	● ⁶ <mark>√1</mark>	$\left \overline{\text{QP}}\right = \sqrt{50}$ $\bullet^6 \checkmark$
$\left \overline{\text{QS}} \right = \sqrt{26}$		$\left \overline{PS}\right = \sqrt{18}$ $\bullet^7 \checkmark$
$\cos P\hat{Q}S = \frac{29}{\sqrt{50} \times \sqrt{50}}$	• ⁸ √ 1	$cos \theta = \frac{-21}{\sqrt{50} \times \sqrt{18}}$ $\theta = 134 \cdot 4$ • ⁸ $\checkmark 1$ • ⁸ $\checkmark 1$ • ⁹ \checkmark strategy
	● ⁹ ★ strategy incomplete	$\theta = 134 \cdot 4$ •9 * strategy incomplete
	who continue, and use the evaluate the required angle, are available.	For candidates who continue, and use the angle found to evaluate the required angle, then all marks are available.
Candidate E		Candidate F
From (a) $\overrightarrow{PQ} = -$	21i-14j+k	From (a) $\overrightarrow{PQ} = 21i + 14j - k$
$\overrightarrow{PQ}.\overrightarrow{PS} = -3$	● ⁵ √ 1	$\overrightarrow{PQ}.\overrightarrow{PS} = 3$ $\bullet^5 \checkmark 1$
$\overrightarrow{PQ}.\overrightarrow{PS} = -3$ $\left \overrightarrow{PQ}\right = \sqrt{638}$ $\left \overrightarrow{PS}\right = \sqrt{18}$	● ⁶ √ 1	$\left \overline{PQ}\right = \sqrt{638}$ $\bullet^{6} \checkmark 1$
$\left \overrightarrow{PS} \right = \sqrt{18}$	•7 🗸	$\overrightarrow{PQ}.\overrightarrow{PS} = 3 \qquad \bullet^{5} \checkmark 1$ $\left \overrightarrow{PQ}\right = \sqrt{638} \qquad \bullet^{6} \checkmark 1$ $\left \overrightarrow{PS}\right = \sqrt{18} \qquad \bullet^{7} \checkmark$
$\cos Q\hat{P}S = \frac{-3}{\sqrt{638}} \times$		$\cos Q\hat{P}S = \frac{3}{\sqrt{638} \times \sqrt{18}} \bullet^8 \checkmark 1$
QPS = 91⋅6	• ⁹ 1	$Q\hat{P}S = 88 \cdot 4$ •9 $\checkmark 1$
Candidate G		
From (b) $\overrightarrow{PS} = -4$	4i-3j+k	
$\overrightarrow{PQ}.\overrightarrow{PS} = 3$	• ⁵ ×	
	•6 🗸	
$\left \overrightarrow{PS} \right = \sqrt{26}$	• ⁷ 1	
$\begin{vmatrix} \overline{PS} = \sqrt{26} \\ \cos Q\hat{PS} = \frac{3}{\sqrt{50} \times \sqrt{20}} \end{vmatrix}$	• ⁸ √ 1	
$Q\hat{P}S = 85 \cdot 2$	• ⁹ <u>√</u> 1	

Q	uestion	Generic scheme	Illustrative scheme	Max mark
6.		 ¹ substitute appropriate double angle formula 	• ¹ $5\sin x - 4 = 2(1 - 2\sin^2 x)$	
		• ² express in standard quadratic form	• ² $4\sin^2 x + 5\sin x - 6 = 0$	
		• ³ factorise	• ³ $(4\sin x - 3)(\sin x + 2)$ • ⁴ • ⁵	
		• ⁴ solve for $\sin x^{\circ}$	• $\sin x = \frac{3}{4}$, $\sin x = -2$	
		• ⁵ solve for x	• ⁵ $x = 0.848, 2.29, \sin x = -2$	5
Note	es:			

1. •¹ is not available for simply stating $\cos 2x = 1 - 2\sin^2 x$ with no further working.

2. In the event of $\cos^2 x^\circ - \sin^2 x^\circ$ or $2\cos^2 x^\circ - 1$ being substituted for $\cos 2x$, \bullet^1 cannot be awarded until the equation reduces to a quadratic in $\sin x^\circ$.

3. Substituting $1-2\sin^2 A$ or $1-2\sin^2 \alpha$ for $\cos 2x$ at \bullet^1 stage should be treated as bad form provided the equation is written in terms of x at \bullet^2 stage. Otherwise, \bullet^1 is not available.

- 4. '=0' must appear by \bullet^3 stage for \bullet^2 to be awarded. However, for candidates using the quadratic formula to solve the equation, '=0' must appear at \bullet^2 stage for \bullet^2 to be awarded.
- 5. $5\sin x + 4\sin^2 x 6 = 0$ does not gain \bullet^2 unless \bullet^3 is awarded.

6.
$$\sin x = \frac{-5 \pm \sqrt{121}}{8}$$
 gains •³

- 7. Candidates may express the equation obtained at \bullet^2 in the form $4s^2+5s-6=0$ or $4x^2+5x-6=0$. In these cases, award \bullet^3 for (4s-3)(s+2)=0 or (4x-3)(x+2)=0. However, \bullet^4 is only available if $\sin x$ appears explicitly at this stage.
- 8. \bullet^4 and \bullet^5 are only available as a consequence of solving a quadratic equation.
- 9. •³, •⁴ and •⁵ are not available for any attempt to solve a quadratic equation written in the form $ax^2 + bx = c$.
- 10. ●⁵ is not available to candidates who work in degrees and do not convert their solutions into radian measure.
- 11. Accept answers which round to 0.85 and 2.3 at \bullet^5 eg $\frac{49\pi}{180}$, $\frac{131\pi}{180}$.
- 12. Answers written as decimals should be rounded to no fewer than 2 significant figures.
- 13. Do not penalise additional solutions at \bullet^5 .

Question	Generic s	cheme	Illustrative scheme	e Max mark
Commonly Obs Candidate A	served Responses:		Candidate B	
• ¹ • • ² • (4s-3)(s+2) = $s = \frac{3}{4}, s = -2$ x = 0.848, 2.29	•4 ¥		• ¹ $4\sin^2 x + 5\sin x - 6 = 0$ $9\sin x - 6 = 0$ $\sin x = \frac{2}{3}$ x = 0.730, 2.41	• ² ✓ • ³ ≭ • ⁴ ✓ <u>2</u> • ⁵ ✓ <u>2</u>
Candidate C $5\sin x - 4 = 2(1 + 4\sin^2 x + 5\sin x)$ $\sin x (4\sin x + 5\sin x)$ $\sin x = 6$, $4\sin^2 x + 5\sin^2 x$ $\sin x = 6$, $4\sin^2 x + 5\sin^2 x$	x = 6 y = 6 x + 5 = 6	• ¹ ✓ • ² ✓ 2 • ³ ✓ 2 • ⁴ ≭	Candidate D $5\sin x - 4 = 2(1 - 2\sin^2 x)$ $4\sin^2 x + 5\sin x - 6 = 0$ $4\sin^2 x + 5\sin x = 6$ $\sin x (4\sin x + 5) = 6$ $\sin x = 6, \ 4\sin x + 5 = 6$	• ¹ ✓ • ² ✓ • ³ ✓ <u>2</u> • ⁴ ×
$x = 0 \cdot 253, 2 \cdot 8^{6}$	9	• ⁵ ×	no solution, $\sin x = \frac{1}{4}$ x = 0.253, 2.89	• ⁵ ≭
Candidate E - r	reading $\cos 2x$ as $\cos 2x$	$\cos^2 x$		
$5\sin x - 4 = 2\cos x$ $5\sin x - 4 = 2(1)$ $2\sin^2 x + 5\sin x$ $\sin x = \frac{-5 \pm \sqrt{73}}{4}$ $\sin x = 0.886,$ x = 1.08, 2.05	$-\sin^2 x \Big) -6 = 0 \frac{3}{2}$	• $1 \times$ • $2 \checkmark 1$ • $3 \checkmark 1$ • $4 \checkmark 1$ • $5 \checkmark 1$		

Q	uesti	on	Generic scheme		Illustrative scheme	Max mark
7.	(a)		• ¹ write in differentiable form	• ¹	$\dots -2x^{\frac{3}{2}}$ stated or implied	
			• ² differentiate one term	•2	$\frac{dy}{dx} = 6$ or $\frac{dy}{dx} = 3x^{\frac{1}{2}}$	
			• ³ complete differentiation and equate to zero	•3	$\dots -3x^{\frac{1}{2}} = 0$ or $6\dots = 0$	
			• ⁴ solve for x	•4	<i>x</i> = 4	4
			tes who integrate one or other of t served Responses:	he te	erms •⁴ is unavailable.	
			•	Candi	date B - integrating the second t	term
	6x-2	3	•1 🗸	y = 6	$x-2x^{\frac{3}{2}}$ • ¹ \checkmark	
$\frac{dy}{dx} =$	=6-3	$3x^{\frac{5}{2}}$			$6 - \frac{4}{5} x^{\frac{5}{2}} \qquad \bullet^2 \checkmark$	
	$3x^{\frac{5}{2}} =$		• ³ ¥	-	$x^{\frac{5}{2}} = 0 \qquad \bullet^3 \mathbf{x}$	
x = x	1.32		• ⁴ 1	x = 2	•24 • ⁴ *	

Q	Question		Generic scheme	Illustrative scheme	Max mark		
7.	(b)		 •⁵ evaluate y at stationary point •⁶ consider value of y at end points •⁷ state greatest and least values 	 •⁵ 8 •⁶ 4 and 0 •⁷ greatest 8, least 0 stated explicitly 	3		
Note	Notes:						
	4. The only valid approach to finding the stationary point is via differentiation. A numerical approach can only gain \bullet^6 .						

- 5. \bullet^7 is not available to candidates who do not consider both end points.
- 6. Vertical marking is not applicable to \bullet^6 and \bullet^7 .
- 7. Ignore any nature table which may appear in a candidate's solution; however, the appearance of (4,8) at a nature table is sufficient for \bullet^5 .
- 8. Greatest (4,8); least (9,0) does not gain \bullet^7 .
- 9. •⁵ and •⁷ are not available for evaluating y at a value of x, obtained at •⁴ stage, which lies outwith the interval $1 \le x \le 9$.
- 10. For candidates who **only** evaluate the derivative, \bullet^5 , \bullet^6 and \bullet^7 are not available.

Q	Question		Generic scheme	Illustrative scheme	Max mark
8.	(a)		 find expression for u₁ find expression for u₂ and express in the correct form 	• ¹ $5k - 20$ • ² $u_2 = k(5k - 20) - 20$ leading to $u_2 = 5k^2 - 20k - 20$	2
Note		y Obs	served Responses:		

Q	Question		Generic scheme	Illustrative scheme	Max mark
8.	(b)		• ³ interpret information	• ³ $5k^2 - 20k - 20 < 5$	
			 ⁴ express inequality in standard quadratic form 	• $5k^2 - 20k - 25 < 0$	
			• ⁵ determine zeros of quadratic expression	● ⁵ -1, 5	
			• ⁶ state range with justification	• ⁶ $-1 < k < 5$ with eg sketch or table of signs	4
Note	es:				

1. Candidates who work with an equation from the outset lose \bullet^3 and \bullet^4 . However, \bullet^5 and \bullet^6 are still available.

2. At \bullet^5 do not penalise candidates who fail to extract the common factor or who have divided the quadratic inequation by 5.

- 3. \bullet^4 and \bullet^5 are only available to candidates who arrive at a quadratic expression at \bullet^3 .
- 4. At •⁶ accept "k > -1 and k < 5" or "k > -1, k < 5" together with the required justification.
- 5. For a trial and error approach award 0/4.

Q	Question		Generic scheme	Illustrative scheme	Max mark
9.			Method 1	Method 1	
			• ¹ state linear equation	• $\log_2 y = \frac{1}{4} \log_2 x + 3$	
			• ² introduce logs	• ² $\log_2 y = \frac{1}{4} \log_2 x + 3 \log_2 2$	
			• ³ use laws of logs	• $\log_2 y = \log_2 x^{\frac{1}{4}} + \log_2 2^3$	
			• ⁴ use laws of logs	• $\log_2 y = \log_2 2^3 x^{\frac{1}{4}}$	
			• ⁵ state k and n	• ⁵ $k = 8, n = \frac{1}{4}$ or $y = 8x^{\frac{1}{4}}$	5
			Method 2	Method 2	
			• ¹ state linear equation	• $\log_2 y = \frac{1}{4} \log_2 x + 3$	
			• ² use laws of logs	• ² $\log_2 y = \log_2 x^{\frac{1}{4}} + 3$	
			• ³ use laws of logs	• $\log_2 \frac{y}{x^{\frac{1}{4}}} = 3$	
			• ⁴ use laws of logs	• $\frac{y}{x^{\frac{1}{4}}} = 2^3$	
			• ⁵ state k and n	• ⁵ $k = 8, n = \frac{1}{4}$ or $y = 8x^{\frac{1}{4}}$	5

Question	Generic Scheme	Illustrative Scheme	Max Mark		
	Method 3	Method 3 The equations at \bullet^1 , \bullet^2 and \bullet^3			
	• ¹ introduce logs to $y = kx^n$	must be stated explicitly. • ¹ $\log_2 y = \log_2 kx^n$			
	• ² use laws of logs	• ² $\log_2 y = n \log_2 x + \log_2 k$			
	• ³ interpret intercept	• ³ $\log_2 k = 3$			
	 ⁴ use laws of logs ⁵ interpret gradient 	• ⁴ $k = 8$ • ⁵ $n = \frac{1}{4}$			
		4	5		
	Method 4	Method 4			
	• ¹ interpret point on log graph	• $\log_2 x = -12$ and $\log_2 y = 0$			
	\bullet^2 convert from log to exp. form	• ² $x = 2^{-12}$ and $y = 2^{0}$			
	\bullet^3 interpret point and convert	• ³ $\log_2 x = 0$, $\log_2 y = 3$ $x = 1$, $y = 2^3$			
	• ⁴ substitute into $y = kx^n$ and evaluate k	• ⁴ $2^3 = k \times 1^n \Longrightarrow k = 8$			
	• ⁵ substitute other point into $y = kx^n$ and evaluate n	• ⁵ $2^0 = 2^3 \times 2^{-12n}$ $\Rightarrow 3 - 12n = 0$ 1			
		$\Rightarrow n = \frac{1}{4}$	5		
Notes:					
 Markers must not pick and choose between methods. Identify the method which best matches the candidates approach. Treat the omission of base 2 as bad form at •¹ and •³ in Method 1, at •¹ and •² for Method 2 and Method 3, and at •¹ in Method 4. 					
3. ' $m = \frac{1}{4}$ ' or 'gradient $= \frac{1}{4}$ ' does not gain \bullet^5 in Method 3.					
4. Accept 8 in lieu of 2 ³ throughout.					

4. Accept 8 in lieu of 2³ throughout. 5. In Method 4 candidates may use (0,3) for \bullet^1 and \bullet^2 followed by (-12,0) for \bullet^3 .

Question	Generic scheme	Illustrative scheme Max mark
	served Responses:	
Candidate A		Candidate B
With no workin Method 3:	g.	With no working. Method 3:
k = 8	•4 🗸	<i>n</i> = 8 •4 x
$n = \frac{1}{4}$	•5 🗸	$k = \frac{1}{4} \qquad \qquad \bullet^5 \mathbf{x}$
Award 2/5		Award 0/5
Candidate C		Candidate D
Method 3:		Method 2:
$\log_2 k = 3$	•3 🗸	$\log_2 y = \frac{1}{4} \log_2 x + 3 \qquad \bullet^1 \checkmark$
k = 8	•4 ✓	$\log_2 y = \log_2 x^{\frac{1}{4}} + 3 \qquad \bullet^2 \checkmark$
$n=\frac{1}{4}$	•5 🗸	$y = x^{\frac{1}{4}} + 3 \qquad \qquad \bullet^3 \mathbf{x} \bullet^4 \mathbf{x}$
		$k = 1, n = \frac{1}{4}$ $\bullet^5 \times$
Award 3/5		Award 2/5
Candidate E		
Method 2:		
$y = \frac{1}{4}x + 3$		
$y = \frac{1}{4}x + 3$ $\log_2 y = \frac{1}{4}\log_2$	<i>x</i> +3 ● ¹ ✓	
$\log_2 y = \log_2 x^{\frac{1}{4}}$		
$\frac{y}{x^{\frac{1}{4}}} = 3$	• ³ • ⁴ x	
$y = 3x^{\frac{1}{4}}$	● ⁵ √ 1	
Award 3/5		

Q	uestio	on	Generic scheme	Illustrative scheme	Max mark	
10.	(a)		Method 1 • ¹ calculate m_{AB} • ² calculate m_{BC} • ³ interpret result and state conclusion	Method 1 • $m_{AB} = \frac{3}{9} = \frac{1}{3}$ see Note 1 • $m_{BC} = \frac{5}{15} = \frac{1}{3}$ • $\dots \Rightarrow AB$ and BC are parallel (common direction), B is a common point, hence A, B and C are collinear.	3	
			Method 2 • 1 calculate an appropriate vector e.g. \overrightarrow{AB} • 2 calculate a second vector e.g. \overrightarrow{BC} and compare • 3 interpret result and state conclusion	Method 2 •1 $\overrightarrow{AB} = \begin{pmatrix} 9 \\ 3 \end{pmatrix}$ see Note 1 •2 $\overrightarrow{BC} = \begin{pmatrix} 15 \\ 5 \end{pmatrix}$ \therefore $\overrightarrow{AB} = \frac{3}{5}\overrightarrow{BC}$ •3 $\dots \Rightarrow$ AB and BC are parallel (common direction), B is a common point, hence A, B and C are collinear.	3	
			Method 3 • ¹ calculate m_{AB} • ² find equation of line and substitute point • ³ communication	Method 3 • $m_{AB} = \frac{3}{9} = \frac{1}{3}$ • e^{2} eg, $y - 1 = \frac{1}{3}(x-2)$ leading to $6 - 1 = \frac{1}{3}(17-2)$ • 3 since C lies on line A, B and C are collinear		
1. A 2. •	"collinear".					

Question	_	ic scheme	Illus	strative scheme	Max mark
Candidate A $m_{AB} = \frac{3}{9} = \frac{1}{3}$ $m_{BC} = \frac{5}{15}$ \Rightarrow AB and BC a B is a common hence A, B and are collinear.	point,	Candidate B $\begin{pmatrix} 9\\ 3 \end{pmatrix}$ $\begin{pmatrix} 15\\ 5 \end{pmatrix}$ $\therefore \ \overrightarrow{AB} = \frac{5}{3}\overrightarrow{BC}$ $\Rightarrow AB and BC are particular by a back of the set of $	arallel ,	$\overrightarrow{BC} = \begin{pmatrix} 15\\5 \end{pmatrix} = 5 \begin{pmatrix} 3\\1 \end{pmatrix} \text{ and }$ $\begin{pmatrix} 9\\3 \end{pmatrix} = 3 \begin{pmatrix} 3\\1 \end{pmatrix} \bullet$ $\therefore \overrightarrow{AB} = \frac{5}{3} \overrightarrow{BC} \text{ ignore wor subsequent to correct statement at } \bullet^2.$ $\Rightarrow AB \text{ and BC are paral B is a common point, hence A, B and C}$	king

Question		on	Generic s	cheme		Illustrative scheme		Max mark
10.	(b)		• ⁴ find radius		•4	6√10		
			• ⁵ determine an ap	propriate rati	o • ⁵	e.g. 2:3 or $\frac{2}{5}$ (using B ar	nd C)	
			 ⁶ find centre ⁷ state equation c 	of circle		or 3:5 or $\frac{8}{5}$ (using A a (8,3) $(x-8)^2 + (y-3)^2 = 360$	and C)	4
Note		the (correct centre appe	ars without wo	rking	\bullet^5 is lost, \bullet^6 is awarded a	and \bullet^7 is a	still
5. C	Do not	acce	ect centre or an incorpt $(6\sqrt{10})^2$ for \bullet^7 .	orrect radius a	ppear	s ex nihilo • ⁷ is not availa	able.	
	didate				Candi	date E		
_	us = 6				-	$s = 3\sqrt{10}$	• ⁴	×
		•	midpoint of BC			rets D as midpoint of AC	• ⁵	×
Cent	re D i	is(9·5	5, 3.5)	• ⁶ 🖌 2	Centre	e D is(5, 2)	• ⁶	√ 2
(<i>x</i> -	$(9.5)^2$	+(y-	$(-3\cdot5)^2 = 360$	•7 1	(x-5)	$y^{2} + (y-2)^{2} = 90$ • ⁷	7	√ 1
Cano	didate	e F		(Candi	date G		
Radi	us = 🗸	√10		• ⁴ ¥	Radius	$5 = 6\sqrt{10}$	• ⁴	 Image: A second s
	•		midpoint of AC	• ⁵ 🗴	CD_	$\frac{3}{2}$ or simply $\frac{3}{2}$	• ⁵	<u>_</u>
Cent	re D i	is(5, 2	2)					
(x -	$(5)^{2} + ($	y-2	$)^{2} = 10$	•7 🖌 2	Centre	e D is(11, 4)	•6	¢
	, ,		,		(<i>x</i> -11	$)^{2} + (y-4)^{2} = 360$	•7	√ 1

Q	uestion	Generic scheme	Illustrative scheme	Max mark
11.	(a)	Method 1 • ¹ substitute for $\sin 2x$ • ² simplify and factorise	Method 1 •1 $\frac{2\sin x \cos x}{2\cos x} - \sin x \cos^2 x$ stated explicitly as above or in a simplified form of the above •2 $\sin x(1-\cos^2 x)$ •3 $\sin x \times \sin^2 x$ leading to	
		• 3 substitute for $1 - \cos^{2} x$ and simplify	$\sin^3 x$	3
		Method 2 • ¹ substitute for sin 2 <i>x</i>	Method 2 •1 $\frac{2\sin x \cos x}{2\cos x} - \sin x \cos^2 x$ stated explicitly as above or in a simplified form of the above	
		• ² simplify and substitute for $\cos^2 x$	• ² $\sin x - \sin x (1 - \sin^2 x)$ • ³ $\sin x - \sin x + \sin^3 x$ leading to	
		• ³ expand and simplify	$\sin^3 x$	3
3. • 4. T 5. C	warded ³ is not a Treat mu Marking F On the ap	if there is an error at \bullet^2 . wailable to candidates who work th tiple attempts which are not score rinciple (r).	d \bullet^2 in the same line of working \bullet^1 may shoughout with A in place of x . d out as different strategies, and apply able mark is lost; however, any further	General
Com	monly O	bserved Responses:		
Cano	lidate A		Candidate B	
$\frac{2 \sin 2}{2}$	$\frac{1 x \cos x}{\cos x}$	$-\sin x \cos^2 x = \sin^3 x \bullet^1 \checkmark$	$LHS = \frac{\sin 2x}{2\cos x} - \sin x \cos^2 x$	
sin x	$x - \sin x c$	$\cos^2 x = \sin^3 x$ $\bullet^2 \wedge$	=	$\frac{1 x \cos x}{\cos x}$
1-c	$\cos^2 x = \sin^2 x$	$n^2 x \qquad \bullet^3 x$	$=\sin x$	
ln p with	both sid	x e identity, candidates must work es independently ie in each line of _HS must be equivalent to the line	$\sin x - \sin x \cos^2 x \qquad \bullet^1 \checkmark$ $\sin x (1 - \cos^2 x) \qquad \bullet^2 \checkmark$	

Ques	stion	Generic scheme	Illustrative scheme	Max mark	
11. (b))	 ⁴ know to differentiate sin³ x ⁵ start to differentiate ⁶ complete differentiation 	• ⁴ $\frac{d}{dx}(\sin^3 x)$ • ⁵ $3\sin^2 x$ • ⁶ ×cos x		
Notes:				3	
Commonly Observed Responses:					

[END OF MARKING INSTRUCTIONS]